Controlled Administration of Penicillamine Reduces Radiation Exposure in Critical Organs during 64Cu-ATSM Internal Radiotherapy: A Novel Strategy for Liver Protection
نویسندگان
چکیده
PURPOSE (64)Cu-diacetyl-bis (N (4)-methylthiosemicarbazone) ((64)Cu-ATSM) is a promising theranostic agent that targets hypoxic regions in tumors related to malignant characteristics. Its diagnostic usefulness has been recognized in clinical studies. Internal radiotherapy (IRT) with (64)Cu-ATSM is reportedly effective in preclinical studies; however, for clinical applications, improvements to reduce radiation exposure in non-target organs, particularly the liver, are required. We developed a strategy to reduce radiation doses to critical organs while preserving tumor radiation doses by controlled administration of copper chelator penicillamine during (64)Cu-ATSM IRT. METHODS Biodistribution was evaluated in HT-29 tumor-bearing mice injected with (64)Cu-ATSM (185 kBq) with or without oral penicillamine administration. The appropriate injection interval between (64)Cu-ATSM and penicillamine was determined. Then, the optimal penicillamine administration schedule was selected from single (100, 300, and 500 mg/kg) and fractionated doses (100 mg/kg×3 at 1- or 2-h intervals from 1 h after (64)Cu-ATSM injection). PET imaging was performed to confirm the effect of penicillamine with a therapeutic (64)Cu-ATSM dose (37 MBq). Dosimetry analysis was performed to estimate human absorbed doses. RESULTS Penicillamine reduced (64)Cu accumulation in the liver and small intestine. Tumor uptake was not affected by penicillamine administration at 1 h after (64)Cu-ATSM injection, when radioactivity was almost cleared from the blood and tumor uptake had plateaued. Of the single doses, 300 mg/kg was most effective. Fractionated administration at 2-h intervals further decreased liver accumulation at later time points. PET indicated that penicillamine acts similarly with the therapeutic (64)Cu-ATSM dose. Dosimetry demonstrated that appropriately scheduled penicillamine administration reduced radiation doses to critical organs (liver, ovaries, and red marrow) below tolerance levels. Laxatives reduced radiation doses to the large intestine. CONCLUSIONS We developed a novel strategy to reduce radiation exposure in critical organs during (64)Cu-ATSM IRT, thus promoting its clinical applications. This method could be beneficial for other (64)Cu-labeled compounds.
منابع مشابه
64Cu-ATSM internal radiotherapy to treat tumors with bevacizumab-induced vascular decrease and hypoxia in human colon carcinoma xenografts
Bevacizumab, an anti-vascular endothelial growth factor (VEGF) antibody, is an antiangiogenic agent clinically used for various cancers. However, repeated use of this agent leads to tumor-decreased vascularity and hypoxia with activation of an HIF-1 signaling pathway, which results in drug delivery deficiency and induction of malignant behaviors in tumors. Here, we developed a novel strategy to...
متن کاملMultiple Administrations of 64Cu-ATSM as a Novel Therapeutic Option for Glioblastoma: a Translational Study Using Mice with Xenografts
Glioblastoma is the most aggressive malignant brain tumor in humans and is difficult to cure using current treatment options. Hypoxic regions are frequently found in glioblastoma, and increased levels of hypoxia are associated with poor clinical outcomes of glioblastoma patients. Hypoxia plays important roles in the progression and recurrence of glioblastoma because of drug delivery deficiencie...
متن کاملAbsorbed dose to peripheral organs during different methods of dental radiology using radiation estimation models
Introduction: Dental radiography as one of the most frequent type of radiological examinations is accepted for medical investigations due to their significant benefits nevertheless using ionizing radiation. It has lower radiation dose compared to another radiological examination but because of its high application for children, radiation dose needs attention. Based on affectin...
متن کاملProduction, quality control and imaging of 64Cu-ATSM in healthy rabbits for clinical applications
Introduction: [64Cu]diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]ATSM) is a well-established hypoxia imaging tracer with reproducible production and significant specifity. In this work the high yield production and quality control as well as imaging studies in healthy rabbits is reported. Methods: Copper-64 produced ...
متن کاملThe comparison of dose distribution of different 3D conformal and conventional radiotherapy plans for gastric cancer
Aims: It was aimed to investigate postoperative conformal radiotherapy planning that provides the best target volume and the least dose for critical organs in cancers of stomach. Methods: This study was conducted on the CT simulation images of thirty patients diagnosed with gastric cancer. Target volumes and the organs at risk were contoured. AP-PA reciprocal parallel field conventional plan an...
متن کامل